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Abstract In the generalized Sturmian method, solutions to the many-particle
Schrödinger equation are built up from isoenergetic sets of solutions to an approximate
Schrödinger equation with a weighted potential βνV0(x). The weighting factors βν

are chosen in such a way as to make all of the members of the basis set correspond to
the energy of the state being represented. In this paper we apply the method to core
ionization in atoms and atomic ions, using a basis where V0(x) is chosen to be the
nuclear attraction potential. We make use of a large-Z approximation, which leads to
extremely simple closed-form expressions not only for energies, but also for values
of the electronic potential at the nucleus. The method predicts approximately piece-
wise linear dependence of the core-ionization energies on the number of electrons N
for isonuclear series, and an approximately linear dependence of �E − Z2/2 on the
nuclear charge Z for isoelectronic series.

Keywords Generalized Sturmians · Large-Z approximation · Atomic structure ·
Core-ionization · Electronic potential

1 Introduction

Because of their completeness properties, one-electron Sturmian basis sets have long
been used in atomic physics. The members of such basis sets are isoenergetic solutions
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to an approximate Schrödinger equation with a weighted potential, the weighting fac-
tor being chosen so that all the members of the set correspond to the same energy.
For example, Coulomb Sturmian basis sets are square-integrable isoenergetic sets of
functions that obey

[
−1

2
∇2 − βn

1

r
− E

]
φnlm(x) = 0 (1)

If the weighting factor βn is chosen to be βn = kn for a positive k, then all the solutions
correspond to the energy E = −k2/2. In Eq. 1, and throughout this paper, atomic units
are used, so that all energies are in Hartrees and all lengths in Bohrs.

In 1968, Goscinski [19] generalized the Sturmian concept by introducing basis
sets that are solutions to an approximate many-particle Schrödinger equation with a
weighted potential:

⎡
⎣−

N∑
j=1

1

2m j
∇2

j + βνV(x1, x2, . . . , xN ) − E

⎤
⎦ �ν(x1, x2, . . . , xN ) = 0 (2)

the weighting factor βν once again being chosen in such a way as to make all of the
solutions correspond to the same energy. Basis sets of this kind can be used in a wide
variety of problems.

In the present paper, Sect. 2–5 review the generalized Sturmian method as well as
the large-Z approximation for atoms and ions that was introduced by us in [17]. These
methods have been described in much more detail in our recent book [22]. Other work
on Sturmians and generalized Sturmians can be found in references [2–21].

In the remainder of the paper, we apply the generalized Sturmian method in the
large-Z approximation to atomic core ionization. The generalized Sturmian method
in the large-Z approximation yields strikingly simple expressions for the electronic
potential at the nuclei of atoms and atomic ions, as is shown in Sect. 6.

The method also yields extremely simple closed form expressions for the approxi-
mate energies of both the ground states and excited states of atoms and atomic ions. In
Sect. 7, these closed form expressions are used to derive an approximate linear depen-
dence of the core ionization energies of isoelectronic series on the nuclear charge Z ,
and an approximate piecewise linear dependence for isonuclear series on the number
of electrons N . The expression for the potential at the nucleus gives insight into the
piecewise linear core ionization energies of isonuclear series.

The accuracy of the large-Z approximation for few-electron systems is such that
even for moderate values of Z , inaccuracies are much smaller than relativistic cor-
rections. An approximate method for making relativistic corrections is introduced in
Sect. 8. It is shown that the corrected energies rapidly approach the experimental ones
as Z increases.
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2 The generalized Sturmian method applied to atoms

In atomic units, the non-relativistic Schrödinger equation for an N -electron atom or
atomic ion with nuclear charge Z is given by

[
−1

2
� + V(x) − Eκ

]
�κ(x) = 0 (3)

where �κ is the κth electronic state with Eκ the corresponding energy,

V(x) = −
N∑

j=1

Z

r j
+

N∑
j>i

N∑
i=1

1

ri j
(4)

and

− 1

2
� ≡ −1

2

3N∑
j=1

∂2

∂x2
j

(5)

The solution is usually built up from a superposition of basis functions

�κ(x) =
∑
ν

�ν(x)Bνκ (6)

In the generalized Sturmian method, these basis functions are chosen to be isoenergetic
solutions to an approximate Schrödinger equation with a weighted potential [2–21]:

[
−1

2
� + βνV0(x) − Eκ

]
�ν(x) = 0 (7)

The weighting factors βν are especially chosen so that Eκ is the energy of the state to
be represented. For few-electron atoms or atomic ions, it is convenient to let V0(x) be
the electrostatic attraction potential of the nucleus:

V0(x) = −
N∑

j=1

Z

r j
(8)

such that

V(x) = V0(x) + V′(x) with V′(x) =
N∑

j>i

N∑
i=1

1

ri j
(9)

With this choice of V0(x), the weighting factors βν are determined automatically, and
Eq. 7 is satisfied by Slater determinants of the form:

�ν(x) = |χµ1χµ2 . . . χµN | (10)
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where the χµ’s are hydrogenlike spin-orbitals

χnlm,+1/2(x j ) = Rnl(r j )Ylm(θ j , φ j )α( j)

χnlm,−1/2(x j ) = Rnl(r j )Ylm(θ j , φ j )β( j)
(11)

with the weighted charges ([22], Chap. 3):

Qν = βν Z = pκ

Rν

(12)

where

pκ ≡ √−2Eκ (13)

and

Rν ≡
√

1

n2
1

+ 1

n2
2

+ · · · + 1

n2
N

(14)

Here n1, n2, . . . , nN represent the principal quantum numbers of the hydrogenlike
spin-orbitals in the configuration �ν . The energy Eκ will then be related to the
weighted nuclear charges Qν by

Eκ = − p2
κ

2
= −1

2
Q2

νRν
2 = −

(
Q2

ν

2n2
1

+ Q2
ν

2n2
2

+ · · · + Q2
ν

2n2
N

)
(15)

Each of the hydrogenlike spin-orbitals obeys a one-electron Schrödinger equation of
the form:

[
−1

2
∇2

j + Q2
ν

2n2 − Qν

r j

]
χµ(xj) = 0 (16)

From Eq. 16 it follows that

⎡
⎣−1

2

N∑
j=1

∇2
j

⎤
⎦ �ν(x) =

[
−

(
Q2

ν

2n2
1

+ Q2
ν

2n2
2

+ · · · + Q2
ν

2n2
N

)

+
(

Qν

r1
+ Qν

r2
+ · · · + Qν

rN

) ]
�ν(x)

= [
Eκ − βνV0(x)

]
�ν(x) (17)

from which it can be seen that Eq. 7 will indeed be satisfied by the configurations �ν ,
provided that the effective nuclear charges Qν are chosen according to the rule given in
Eqs. 12–14. We shall call such a set of isoenergetic solutions to (7) with V0(x) chosen
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to be the nuclear attraction potential a set of “Goscinskian configurations” to honor
Prof. Osvaldo Goscinski’s important early contributions to the generalized Sturmian
method [19].

3 Potential-weighted orthonormality relations

A set of Goscinskian configurations obey potential-weighted orthonormality relations.
This can be seen as follows: by rearranging the terms in Eq. 7 we obtain:

∫
dτ �∗

ν′(x)

[
1

2
� + Eκ

]
�ν(x) = βν

∫
dτ �∗

ν′(x)V0(x)�ν(x) (18)

and similarly

∫
dτ �∗

ν(x)

[
1

2
� + Eκ

]
�ν′(x) = βν′

∫
dτ �∗

ν(x)V0(x)�ν′(x) (19)

Subtracting the complex conjugate of (19) from (18) and making use of the Hermiticity
of the kinetic energy operator, we obtain

(βν − βν′)
∫

dτ �∗
ν′(x)V0(x)�ν(x) = 0 (20)

from which it follows that
∫

dτ �∗
ν′(x)V0(x)�ν(x) = 0 if βν′ �= βν (21)

The hydrogenlike spin orbitals are orthonormal:

∫
dτ j χ∗

µ′(x j )χµ(x j ) = δµ′µ (22)

and they obey the Virial Theorem:

−
∫

dτ j |χµ(x j )|2 Qν

r j
= − Q2

ν

n2 (23)

Therefore, using first the Slater–Condon rules, then (12) and (23),

∫
dτ V0(x)|�ν(x)|2 = −

∑
µ∈ν

∫
dτ j |χµ(x j )|2 Z

r j

= − 1

βν

∑
µ∈ν

∫
dτ j |χµ(x j )|2 Qν

r j

= − Q2
ν

βν

∑
µ∈ν

1

n2 = 2Eκ

βν

(24)
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and thus we finally obtain the potential-weighted orthonormality relation:

∫
dτ �∗

ν′(x)V0(x)�ν(x) = δν′ν
2Eκ

βν

= −δν′ν
p2
κ

βν

(25)

4 Generalized Sturmian secular equations

We now introduce the definitions

T 0
ν′ν ≡ − 1

pκ

∫
dτ �∗

ν′(x)V0(x)�ν(x) (26)

and

T ′
ν′ν ≡ − 1

pκ

∫
dτ �∗

ν′(x)V′(x)�ν(x) (27)

From the potential-weighted orthonormality relations (25) and the definition of βν

(12) it follows that

T 0
ν′ν = δν′ν ZRν (28)

Thus the matrix T 0
ν′ν is diagonal and independent of pκ . It can be shown ([22], Appen-

dix A) that T ′
ν′ν is also independent of pκ , although it is not diagonal. We shall call T ′

ν′ν
the “energy-independent interelectron repulsion matrix”. To obtain the generalized
Sturmian secular equations, we begin by substituting the superposition (6) into the
Schrödinger equation (3). This yields:

∑
ν

[
−1

2
� + V(x) − Eκ

]
�ν(x)Bνκ = 0 (29)

Next, we notice that since all of the isoenergetic Goscinskian configurations in the
basis set obey (7), Eq. 29 can be rewritten as

∑
ν

[
V(x) − βνV0(x)

]
�ν(x)Bνκ = 0 (30)

We then multiply by a conjugate function from our basis set and integrate over all
space and spin coordinates:

∑
ν

∫
dτ �∗

ν′(x)
[
V(x) − βνV0(x)

]
�ν(x)Bνκ = 0 (31)

Making use of Eqs. 26–28, we obtain

∑
ν

[−pκδν′ν ZRν − pκ T ′
ν′ν + βν pκδν′ν ZRν

]
Bνκ = 0 (32)
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Finally, using the relationship

βν ZRν = pκ (33)

and dividing by pκ , we obtain the generalized Sturmian secular equations:

∑
ν

[
δν′ν ZRν + T ′

ν′ν − pκδν′ν
]

Bνκ = 0 (34)

Equation 34 differs in several respects from the conventional secular equations used
in quantum theory:

1. The kinetic energy term has vanished.
2. The nuclear attraction matrix is diagonal and energy-independent.
3. The interelectron repulsion matrix is energy-independent.
4. The roots are not energies but values of the scaling parameter, pκ , which is pro-

portional to the square roots of the binding energies (Eq. 13).
5. Before the secular equation is solved, only the form of the basis set is known, but

not the values of the scaling parameters pκ . Solution of the secular equations yields
a near-optimum basis set appropriate for each state, as well as the states themselves
and their corresponding energies.

5 The large-Z approximation: restriction of the basis set to an R-block

If interelectron repulsion is entirely neglected, i.e. when disregarding the second term
in Eq. 34, the calculated energies Eκ of �κ become those of a set of N completely
independent electrons moving in the field of the bare nucleus:

Eκ = − p2
κ

2
−→ −1

2
Z2Rν

2 = − Z2

2n2
1

− Z2

2n2
2

− · · · − Z2

2n2
N

(35)

Equation 35 is not the large-Z approximation: in the large-Z approximation, we do not
neglect interelectron repulsion, but we restrict the basis set to those Goscinskian con-
figurations that would be degenerate if interelectron repulsion were entirely neglected,
i.e., we restrict the basis to a set of configurations all of which correspond to the same
value of Rν . In that case, the first term in (34) is a multiple of the identity matrix, and
the eigenvectors Bνκ are the same as those that would be obtained by diagonalizing
the energy-independent interelectron repulsion matrix T ′

ν′ν , since the eigenfunctions
of any matrix are unchanged by adding a multiple of the unit matrix.

∑
ν

[
T ′

ν′ν − λκδν′ν
]

Bνκ = 0 (36)

The roots are shifted by an amount equal to the constant by which the identity matrix
is multiplied:

pκ = ZRν + λκ = ZRν − |λκ | (37)
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and the energies become

Eκ = −1

2
(ZRν − |λκ |)2 (38)

Since the roots λκ are always negative, we may use the form −|λκ | in place of λκ to
make explicit the fact that interelectron repulsion reduces the binding energies, as of
course it must. The roots λκ are pure numbers that can be calculated once and for all
and stored. From these roots, a great deal of information about atomic states can be
found with very little effort.

6 Electronic potential at the nucleus

The electronic potential ϕ(x1) is related to the electronic density distribution by

ϕ(x1) =
∫

d3x ′
1

ρ(x′
1)

|x1 − x′
1|

(39)

If the coordinate system is centered on the nucleus, the electronic potential at the
nucleus is then given by

ϕ(0) =
∫

d3x ′
1
ρ(x′

1)

|x′
1|

(40)

But the electron density corresponding to the state �κ is defined as

ρ(x1) = N
∫

ds1

∫
dτ2

∫
dτ3 . . .

∫
dτN �∗

κ (x)�κ(x) (41)

where the integral is taken over the spin coordinate of the first electron and over
the space and spin coordinates of all the other electrons. The wave function �κ(x) =∑

ν �κ(x)Bνκ is a linear combination of Goscinskian configurations. Thus the density
is given by

ρ(x1) =
∑
ν′,ν

ρν′ν(x1)B∗
νκ Bνκ (42)

where

ρν′ν(x1) = N
∫

ds1

∫
dτ2 · · ·

∫
dτN �∗

ν′(x)�ν(x)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 for |ν′ \ ν| ≥ 2

χ∗
µ′(x1)χµ(x1) for ν′ \ ν = {µ} and ν \ ν′ = {µ′}

∑N
i=1 |χµi (x1)|2 for ν′ = ν

(43)
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Fig. 1 The electronic potentials at the nuclei of ions in the isonuclear series with nuclear charge Z = 18
are shown for 1 ≤ N ≤ 18. The upper set of dots were generated neglecting interelectron repulsion, and
are seen to be exactly piecewise linear. The lower set of values take interelectron repulsion into account

In Eq. 43 we have made use of the fact that within an R-block, the atomic spin-orbitals
are orthonormal.

We calculated the potential at the nucleus (within the framework of the large-Z
approximation) by generating the wave functions and from those the densities, using
Eqs. 40–43. By this somewhat laborious method, we obtained the values shown in
Fig. 1. In this figure, the upper dots correspond to densities generated neglecting inter-
electron repulsion. In the lower set of dots, interelectron repulsion is included. The
fact that the unscreened values were exactly piecewise linear, and that the more exact
values that included repulsion were very nearly piecewise linear, was so striking, that
we were challenged to explain it.

In finding the explanation we were led to surprisingly simple expressions for the
potential at the nucleus of an atom or ion: within the framework of the large-Z approx-
imation we have

∫
dτ �∗

κ (x)V0(x)�κ(x) =
∑
ν′

∑
ν

B∗
ν′κ Bνκ

∫
dτ �∗

ν′(x)V0(x)�ν(x)

= − p2
κ

βν

∑
ν

|Bνκ |2 (44)

In the second step above, we make use of the potential weighted orthonormality rela-
tion (25). Further, since

∑
ν |Bνκ |2 = 1, Eq. 44 reduces to

∫
dτ �∗

κ (x)V0(x)�κ(x) = − p2
κ

βν

= −pκ ZRν (45)
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This result can be used to express the electronic potential at the nucleus in a very
simple form. Combining (40) and (41), we obtain

ϕ(0) = N
∫

dτ
1

|x1|�
∗
κ (x)�κ(x) (46)

From the definition of V0, (8), and from the fact that each term in the sum in (8) gives
the same contribution, we have

ϕ(0) = − 1

Z

∫
dτ�∗

κ (x)V0(x)�κ(x) (47)

Combining Eqs. 45 and 47 we obtain the extremely simple result:

ϕ(0) = pκRν (48)

which can alternatively be written in the form:

ϕ(0) = ZRν
2 − |λκ |Rν (49)

or in a third form:

ϕ(0) = QνRν
2 (50)

since Qν = Z − |λκ |/Rν . From Eqs. 48–50 it follows that for an isonuclear series,
the electronic potential at the nucleus depends on N in an approximately piecewise
linear way. For example, let us consider the isonuclear series where Z = 18. Keeping
the nuclear charge Z constant at this value, we begin to add electrons. For the ground
state we have:

Rν
2 ≡ 1

n2
1

+ 1

n2
2

+ · · · + 1

n2
N

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N
1 N ≤ 2

2
1 + N−2

4 2 ≤ N ≤ 10

2
1 + 8

4 + N−10
9 10 ≤ N ≤ 18

(51)

Tables 1–3 show the roots |λκ | of the energy-independent interelectron repulsion
matrix T ′

ν′ν . For each value of N , the numerically smallest of these roots corresponds
to the ground state. The term ZRν

2 is dominant in Eq. 49. When the second term
is entirely neglected, i.e., when the effects of interelectron repulsion are neglected,
then the dependence of ϕ(0) on N is exactly piecewise linear. However, because of
the presence of the second term, the N -dependence is only approximately piecewise
linear.
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Table 1 Roots of the ground state R-block of the interelectron repulsion matrix for the He-like, Li-like,
Be-like, B-like and C-like isoelectronic series

He-like|λκ | Term Li-like |λκ | Term Be-like |λκ | Term B-like |λκ | Term C-like |λκ | Term

0.441942 1S 0.681870 2S 0.986172 1S 1.40355 2P 1.88151 3P

0.729017 2P 1.02720 3P 1.44095 4P 1.89369 1D

1.06426 1P 1.47134 2D 1.90681 1S

1.09169 3P 1.49042 2S 1.91623 5S

1.10503 1D 1.49395 2P 1.995141 3D

1.13246 1S 1.52129 4S 1.96359 3P

1.54037 2D 1.98389 3S

1.55726 2P 1.98524 1D

1.99742 1P

2.04342 3P

2.05560 1D

2.07900 1S

Table 2 Roots of the ground state R-block of the interelectron repulsion matrix T ′
ν′ν for the N-like, O-like,

F-like and Ne-like isoelectronic series

N-like |λκ | Term O-like |λκ | Term F-like|λκ | Term Ne-like|λκ | Term

2.41491 4S 3.02641 3P 3.68415 2P 4.38541 1S

2.43246 2D 3.03769 1D 3.78926 2S

2.44111 2P 3.05065 1S

2.49314 4P 3.11850 3P

2.52109 2D 3.14982 1P

2.53864 2S 3.24065 1S

2.54189 2P

2.61775 2P

In Fig. 2, we see that the values for the electronic potential at the nucleus, labori-
ously calculated by generating wave functions and densities, are exactly duplicated
by the simple expressions in Eqs. 48–50, as well as (51) when interelectron repulsion
is neglected.

We should remember that Eqs. 48–50 were derived within the framework of the
large-Z approximation. Thus the piecewise-linear dependence of ϕ(0) on N is only
an approximate one for two reasons—firstly because the term −|λκ |Rν is slightly
nonlinear, and secondly because of the inaccuracies inherent in the large-Z approxi-
mation.
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Table 3 Numerically smallest roots of the R-blocks and Rν
′-blocks of the interelectron repulsion matrix

T ′
ν′ν , where 2 ≤ N ≤ 14, and where N ′ = N −1 is the number of electrons remaining after core ionization.

Primed quantities refer to the core-ionized states

N Rν |λκ | Term N ′ Rν
′ |λ′

κ | Term

2
√

8/2 0.441942 1S 1
√

4/2 0.000000 2S

3
√

9/2 0.681870 2S 2
√

5/2 0.168089 3S

4
√

10/2 0.986172 1S 3
√

6/2 0.433936 2S

5
√

11/2 1.40355 2P 4
√

7/2 0.800757 3P

6
√

12/2 1.88151 3P 5
√

8/2 1.23703 4P

7
√

13/2 2.41491 4S 6
√

9/2 1.73489 5S

8
√

14/2 3.02641 3P 7
√

10/2 2.33058 4P

9
√

15/2 3.68415 2P 8
√

11/2 2.97391 3P

10
√

16/2 4.38541 1S 9
√

12/2 3.66181 2S

11
√

37/3 4.75240 2S 10
√

28/3 4.02987 3S

12
√

38/3 5.1410 1S 11
√

29/3 4.4243 2S

13
√

39/3 5.5860 2P 12
√

30/3 4.8733 3P

14
√

40/3 6.0512 3P 13
√

31/3 5.3434 4P

ZN

2Z
Z N 2

4

4Z
Z N 10

9

Q
2

0 5 10 15 20
N0

20

40

60

80

100

0

Fig. 2 When interelectron repulsion is entirely neglected, the electronic potential at the nucleus is given by
ZRν

2, which is exactly piecewise linear in N . The effect of interelectron repulsion is to decrease ϕ(0) and
to make the dependence only approximately piecewise linear. The figure shows ϕ(0) neglecting interelec-
tron repulsion (upper values) and including it (lower values). The dots are calculated from the electronic
densities of the ground state wave functions, whereas the lines are the closed form expressions found in
Eqs. 49 and 51
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7 Core ionization energies

The large-Z approximation can be used to calculate core-ionization energies, i.e., the
energies required to remove an electron from the inner shell of an atom. From (38) we
can see that this energy will be given by

�E = 1

2

[
(ZRν − |λκ |)2 − (ZRν

′ − |λ′
κ |)2

]
(52)

where the unprimed quantities refer to the original ground state, while the primed
quantities refer to the core-ionized states (Table 2). Since

Rν
2 − Rν

′2 = 1 (53)

Equation 52 can be written in the form

�E − Z2

2
= Z

[Rν
′|λ′

κ | − Rν |λκ |] + |λκ |2 − |λ′
κ |2

2
(54)

Thus we can see that within the framework of the large-Z approximation, the quan-
tity �E − Z2/2 is linear in Z for an isoelectronic series (Table 3). This quantity
represents the contribution of interelectron repulsion to the core ionization energy,
since if interelectron repulsion is completely neglected, the core ionization energy is
given by �E = Z2/2. Core ionization energies calculated from Eqs. 52–54 are shown
in Figs. 3–5.

N 2

N 10

N 18

10 20 30 40
Z

120

100

80

60

40

20

0

E
Z2

2

Fig. 3 For isoelectronic series, Eq. 54 indicates that within the large-Z approximation, the quantity
�E − Z2/2 is exactly linear in Z , as is illustrated above
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5 10 15
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110

120

130

140

150

160

E

Fig. 4 For isonuclear series, the dependence on N is approximately piecewise linear. Whenever a new
shell starts to fill, the slope of the line changes. The dots in the figure were calculated using Eq. 54, where
it is not obvious that the dependence ought to be approximately piecewise linear. However, Eqs. 49 and 51
can give us some insight into the approximately piecewise linear relationship

Z 10

Z 18

2 4 6 8 10 12
N

20

40

60

80
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Fig. 5 This figure shows the dependence of the core-ionization energy on both N and Z for the filling of
the n = 2 shell

8 Validity of the large-Z approximation

In Fig. 6, the large-Z approximation Eκ = − 1
2 (ZRν − |λκ |)2 for the lowest triplet

states of the helium-like isoelectronic series is plotted against spectroscopically deter-
mined energies. In order to better see the details, we plot Eκ/Z2 in Fig. 7. Figure 8
shows Eκ/Z2 for the ground state of the six-electron isoelectronic series.
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10 20 30 40 50
Z

1500

1000

500

Fig. 6 Energies for the lowest 3S state of the helium-like isoelectronic series calculated in the large-Z
approximation, which here limits the basis to a single configuration. The lower (solid) line is corrected for
relativistic effects as discussed in the text; the dots indicate experimental values from the NIST tables
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Fig. 7 Here the 3S energies shown in Fig. 6 are divided by Z2. The lower line is corrected for relativistic
effects. The dots are experimental values
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Fig. 8 The ground state of the carbon-like isoelectronic series
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As the nuclear charge Z increases, the energies and wave functions calculated
with the large-Z approximation approach the exact solutions to the non-relativistic
Schrödinger equation. However, relativistic effects begin to be pronounced at around
Z = 10, and become progressively more so as Z increases. Therefore the calculated
values first approach the experimental ones, but begin to differ as relativity becomes
more and more important.

It is possible to make a rough correction for the relativistic effect on the energies
by multiplying them by an easily calculated factor fκ(Z), so that Eκ becomes

− 1

2
fκ(Z)(ZRν + λκ)2 (55)

The correction factor fκ(Z) is the ratio between the relativistic and non-relativis-
tic energies of a configuration, assuming interelectron repulsion to be completely
neglected such that the energy is equal to that of N independent electrons moving in
the field of the nucleus.

In the nonrelativistic case, the energy of a hydrogenlike spin-orbital is given by
− Z2

2n2 , and thus the total energy of an N -electron configuration is − 1
2 Z2Rν

2.
In the relativistic case, the energy of a single electron in a hydrogenlike orbital can

be found, for example, in [1], or in [22], Eqs. 7.35 through 7.40.
We wish to compare these two energies Erel and Enonrel for a multiconfigurational

state

�κ =
∑
ν

�ν Bνκ (56)

the ratio being

fκ(Z) = Erel

Enonrel
=

∑
ν B2

νκ 〈�ν |H0|�ν〉rel∑
ν B2

νκ 〈�ν |H0|�ν〉nonrel
=

∑
ν B2

νκ 〈�ν |H0|�ν〉rel

− 1
2 Z2

∑
ν B2

νκRν
2

(57)

Here, H0 is a sum of one-electron Hamiltonian operators corresponding to single elec-
trons moving in the field of the bare nucleus, i.e. interelectron repulsion is completely
neglected.

In the figures, the lines are calculated in the large-Z approximation. The upper
(dashed) line is not corrected for relativistic effects, while the lower (solid) line is cor-
rected. The dots are experimental values of the energies taken from the NIST Atomic
Spectra Database [24]. It can be seen from Figs. 5–7 that agreement between the ener-
gies calculated from the large-Z approximation and experimental energies become
progressively better as Z increases, provided that the rough relativistic correction is
made.

We note that the large-Z approximation, despite it’s great simplicity, well approxi-
mates non-relativistic energies; even for modest values of nuclear charge, the error of
the large-Z approximation is smaller than the error due to neglecting relativity. Fur-
ther, relativistic effects may be accounted for by means of an easily calculated factor,
yielding energies that correspond well with experiment.
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The second example presented here (the ground state of the carbonlike isoelectronic
series) is a case not easily approximated using a small number of Goscinskian basis
functions, because interelectron repulsion plays a large role. Nevertheless, it can be
seen that even in this somewhat difficult case, the large-Z approximation gives very
reasonable results. The large-Z approximation is not only extremely simple, but it is
characterized by a small number of parameters–the roots of the interelectron repul-
sion matrix. These roots are dimensionless and independent of energy and of nuclear
charge. They can be calculated once and for all, and they contain information con-
cerning many states of the entire isoelectronic series. Once the roots are obtained,
calculating approximate atomic energies, and a number of other properties, become
tasks that can be performed on the back of an envelope.

9 Discussion

It can be seen that the core ionization energies predicted from the large-Z approxi-
mation depend on N in an approximately piecewise-linear way for isonuclear series,
while �E − Z2/2 depends linearly on Z for isoelectronic series. This result is made
plausible by Eqs. 48–51, in which the electronic potential at the nucleus is shown to
depend approximately piecewise-linearly on N for isonuclear series and linearly on Z
for isoelectronic series. It can also be seen that the generalized Sturmian method using
Goscinskian configurations provides us with a powerful and convenient method for
understanding the properties of atoms and atomic ions. In the large-Z approximation,
the method leads to extremely simple closed-form expressions, not only for energies,
but also for the behavior of the electronic potential near to the nucleus.

The programs used for the calculations in this paper can be downloaded from:
http://sturmian.kvante.org/papers/linear.
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